
Summary. Mathematical modeling of many real world problems involves describing distribu-
tions via lower dimensional sets. Examples are found in several fields, such as urban planning
(transport networks, utility grids and irrigation networks) and data analysis (one-dimensional
representation of distributions of data points). A common trait in these systems is the trade-
off between the “quality” of the network and its complexity. The mathematical modeling of
such systems introduces an energy (objective functional in data analysis) which rewards quality
(approximation error in data analysis), and penalizes complexity. The aim is to minimize the
energy among a given family of admissible sets. The average-distance problem (introduced in
[4]) is one such model. Despite the apparently simple formulation, the non-local nature of the
problem makes its analysis challenging from both theoretical and numerical point of view. My
contributions include addressing fundamental theoretical problems such as regularity of mini-
mizers, overcoming modeling issues by introducing improved functionals suitable for particular
problems, and analyzing discriminating features of different models.

1. Low dimensional representation of measures:
the average-distance problem

One model for dimension reduction is the so-called “average-distance problem”, introduced
by Buttazzo, Oudet and Stepanov [4].

Description of the problem. Let µ be a nonnegative, compactly supported, finite measure,
n ≥ 2, p ≥ 1, λ be a penalization coefficient, the average-distance problem involves minimizing∫

Rn

d(x,Σ)pdµ(x) + λH1(Σ), d(x,Σ) := inf
y∈Σ
|x− y| (1)

where H1 denotes the 1-Hausdorff distance, and Σ varies among compact, path-wise connected
sets with Hausdorff dimension equal to 1.

The average-distance problem finds application in several fields.
• Urban planning: denoting by µ a distribution of population, and by Σ a transit network

(to be built), the term
∫
Rn

d(x,Σ)pdµ(x) represets the “average distance” between pas-

sengers and network, while λH1(Σ) represents the cost to build the network. The goal
of minimizing (1) is to find the network which best serves the population, under cost
considerations (Buttazzo, Pratelli and Stepanov [6], Buttazzo and Santambrogio [8]).

• Data analysis: the formulation in (1) is closely related to the notion of “principal curves”,
introduced by Hastie [20], and extensively studied and used in principal component
analysis (cf. [16, 21, 39, 19, 1, 12, 24]). In this setting, denoting by µ a distribution
of data points, the term

∫
Rn

d(x,Σ)pdµ(x) represets the approximation error induced

associated to Σ, while λH1(Σ) is a cost associated to its complexity. Thus minimizing
(1) corresponds to finding the best approximation, balancing approximation error and
complexity. Choice p = 2 is very common in statistics: in this case, if µ is sum of
finitely many Dirac measures (i.e. µ = 1

N

∑N
i=1 δxi), given a minimizer Σ it follows∫

Rn d(x,Σ)2dµ(x) = 1
N

∑N
i=1 d(x,Σ)2, which is the mean square error. Choice p = 1 is

also relevant, since it is more robust to outliers, i.e. adding an extra data point further
away from the original distribution does not change the representation drastically.

Existence of minimizers for (1) follows from classic compactness theorems. Uniqueness is rarely
true. Many properties for minimizers were proven by Buttazzo, Oudet and Stepanov [4], Buttazzo
and Stepanov [9, 10], Paolini and Stepanov [35]. Further results were obtained by Santambrogio
and Tilli [37], Tilli [41], Lemenant [25] and Slepčev [38]. Main properties on minimizers include:
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• minimizers are topological trees composed of finitely many Lipschitz curves, which meet
at triple junctions,

• minimizers are not C1 regular in general, and can have “corners”. This holds even if the
reference measure µ has smooth density. However C1,1 regularity near triple junctions
holds; moreover, for any minimizer Σ and corner v ∈ Σ, the set {z : |z−v| = d(z,Σ)} (i.e.
the set of points z for which v is closest among all points of Σ) has positive µ-measure.

Research results. My research results are mainly in the following areas.
Regularity of minimizers. First order regularity of minimizers has been extensively studied.

It is known that minimizers are not C1 regular in general, but little was known about the set of
non differentiability. I have proven that such set is not closed in general ([29]). Thus minimizers
can be highly irregular.

Second order regularity was poorly understood. In collaboration with Slepčev, I have proven
a sharp quantitative estimate on the curvature (understood as measures, since minimizers are
not C1 regular in general): any minimizer is composed of at most bµ(Rn)/λc branches, and the
sum of the total variation of the curvature measure of such branches does not exceed µ(Rn)/λ
([33]). This is the first “global” second order result.

Moreover, in modeling problems, topological complexity of minimizers is relevant, and discrete
approximation of continuous reference measures are often used (e.g. in quantization). However
little was known about the relation between the topological complexity of minimizers at discrete
level, and minimizers at continuum level. In the same work [33] we have shown that with such
kind of approximation, the topological complexity is lower semi-continuous, i.e. the topological
complexity of minimizers at continuum level does not exceed the limit inferior of topological
complexity of minimizers at discrete level. This is highly desirable in modeling.

Approximating via parameterized curves. The average-distance problem is related to the classic
notion of “principal curves”, widely used in data analysis. In such setting the minimization is
restricted to the family of embedded curves. However well-posedness was unclear since it was not
known whether minimizers are injective. In collaboration with Slepčev, I proved that minimizers
are injective in two-dimensional domains, provided that either the exponent p ≥ 2 (from (1)), or
p ∈ [1, 2) but the reference measure µ is absolutely continuous with respect to Lebesgue measure
with essentially bounded density.

Improving the data representation. In statistics, projecting a distribution µ of points on a
representation gives a significant simplification, since it allows to work with one-dimensional
(instead higher dimensional) objects. However projecting distinct data points on a singleton is
undesirable, since it leads to a loss of information. Thus additional terms penalizing high data
concentration on the representation are required. A first possibility is to add a L2 penalization
on the density ([30]) of the form {∫ L

0
∣∣ dν
dL1

∣∣2 ds if ν � L1,

+∞ otherwise.

The measure on γ([0, L]) is thus introduced as variable of the minimization. To remove the
excessive geometric rigidity given by

∫
Rn d(x, γ([0, L]))pdµ, which forced points to project on one

of the closest points on the representation, we replaced it by∫
Rn×γ([0,L])

|x− y|pdπ(x, y),

with π varying among transport plans between µ and ν. This is a transport cost, widely studied
in the context of optimal transportation (cf. [3, 46] and references therein). Thus it is allowed
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for points to project on any point on γ([0, L]). Projecting on points further away increases the
transport cost (and it results that points will be projected only slightly further), but can be
beneficial if it decreases the L2 penalization term. An additional term η(γ) penalizing non-
injectivity was introduced, and I proved ([30]) that if (γ, ν) minimizes∫

Rn×γ([0,L])
|x− y|pdπ(x, y) + λL+ ε

∫ L

0

∣∣∣∣ dνdL1

∣∣∣∣2 ds+ ε′η(γ), ε, ε′ > 0,

then ν has Lipschitz density.

Approximating with curvature penalization. Other possible penalization terms include cur-
vature dependent energies. These arise in many mechanical and biological models, such as
energy density of bending elastic membranes, closed lipid bilayers and cell membranes (cf.
[34, 44, 45, 22]). Geometric variants include Willmore type energies, extensively used (e.g.
[13, 15, 40]) due their regularizing effect, and closely related to splines. These are piecewise
polynomial curves used for data interpolation, and cubic splines minimize the integrated squared
curvature among polynomial interpolating curves (cf. [18, 2]). Spline interpolations, by allow-
ing to use even low degree polynomials to achieve low approximation error, are preferable over
polynomial interpolation.

In collaboration with Slepčev, in [31] we considered the minimization problem

min
γ

∫
Rn

d(x, γ([0, L]))pdµ+ λL+
∫ L

0
|κγ |2ds,

where γ varies among arc-length parameterized curves, and κγ denotes the curvature of γ. In this
case we proved that minimizers are C1,1 regular, and if µ is absolutely continuous with respect
to Lebesgue density, with Lr integrable Radon-Nikodym derivative, then the mass projecting on
the image γ([t0, t1]) (t0, t1 ∈ (0, L)) does not exceed c|t1 − t0|1−1/r, for some constant c > 0.
This is desirable, since it provides an upper bound on the mass projecting on γ([t0, t1]).

Evolution problems. Many real world problems are intrinsically evolutionary and monotoni-
cally growing: for instance most transport networks and utility grids are built in phases. Thus
evolutionary models are required for such problems. The average-distance problem admits an
evolutionary variant: given an open, bounded, connected domain Ω a (nonnegative, finite) mea-
sure µ, absolutely continuous with respect to the Lebesgue measure on Ω, p ≥ 1, a time step
ε > 0, an initial datum X0, consider the recursive sequence{

w0 := X0,

wn+1 ∈ argminΣ⊇wn

∫
Ω d(x,Σ)pdµ(x) + 1

2εH
1(Σ4wn),

(2)

where 4 denotes the symmetric difference. A solution of (2) is a sequence {wn}. I proved
([28, 27]) that solutions of (2) exhibit several properties satisfied by minimizers of (1), namely
absence of loops and Ahlfors regularity. However the topological complexity of {wn} can be
greater, since there exist explicit examples where w0 contains a single point triple junction (with
the rest being simple points), but for some n, the set wn contains a quadruple junction ([28]).
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[38] Slepčev D.: Counterexample to regularity in average-distance problem, Ann. Inst. H. Poincaré (C), vol.
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